Hepatitis C: Can we eliminate a cause of CKD?

Jordan J. Feld MD MPH

Toronto Centre for Liver Disease Sandra Rotman Centre for Global Health University of Toronto

Disclosures: J Feld

Research support: Abbvie, Gilead, Janssen, Merck

Consulting: Abbvie, Gilead, Merck

Speaking: None

Objectives

- Appreciate the burden of illness cause by hepatitis C in the renal and non-renal populations
- Recognize the significant advances in antiviral therapy for patients with hepatitis C and particularly for those with renal disease
- 3. Understand the remaining challenges in the road to elimination of hepatitis C

Outline

- Background on HCV
- HCV & CKD
 - Risk of HCV in CKD and CKD in HCV
- Treatment
 - Genotype 1
 - Other genotypes...controversies remain
 - Cryo-related renal disease
- The transplant conundrum

HCV is a MAJOR global public health problem

- ~71 million people infected
- No vaccine
- Leading indication for liver transplant

Should the big 3 be the big 4?

Natural History

Implications of Spontaneous Clearance

- Profile
 - Anti-HCV Ab +ve, HCV RNA -ve
 - Repeat to confirm but likely true clearance vs. false +ve
- True cure of infection
- No liver or non-liver related increased morbidity or mortality → NO clinical significance to +ve test
- (Surrogate for risk behaviours????)
- Will remain anti-HCV +ve lifelong, no risk of relapse but not protected from reinfection

Potential consequences of HCV

Healthy Liver

Cirrhosis 20% Liver Cancer 1-4%/yr

(at 20 yrs of infection)

Slowly progressive over decades of infection

No!

Cirrhosis risk 41% at 30 yrs...lifetime risk 50-60% or higher

What we're trying to prevent

The complications are just beginning

Rising rates of cirrhosis, liver failure, liver cancer

Liver cancer rates increasing

Increasing rates of liver cancer until 2027

Increasing HCV and decreasing HIV mortality

Hepatitis is a MAJOR health problem in Canada

Outline

- Background on HCV
- HCV & CKD
 - Risk of HCV in CKD and CKD in HCV
- Treatment
 - Genotype 1
 - Other genotypes...controversies remain
 - Cryo-related renal disease
- The transplant conundrum

HCV increases the risk of CKD

474,369 from the VA – 52,874 with HCV followed for 4 years – change in GFR and incidence of ESRD

Higher adjusted risk

- All age strata (to 70)
- All strata of baseline GFR
- Etiologies similar but more
 - DM
 - GN

- Rate of ESRD: HCV +ve 4.26 vs HCV –ve: 3.05 per 1000 pt-yrs
- Recent meta-analyses: aHR 1.23 to 1.46 of ESRD if HCV +ve

An indirect cause of CKD

NHANES 9,841 patients – Prev of DM & HCV

HCV interferes with glucose/lipid metabolism → IR → DM

Effect of HCV on DM to ESRD

Propensity score matched risk of ESRD among Taiwanese patients with DM with untreated (n=1, 411), treated (n=1,411) or no HCV (n=5,644)

Treatment of HCV reduces the risk of ESRD among patients with DM

HCV in patients with ESRD

- Increased risk

 historically very high prevalence in HD populations due to transfusion + HD transmission
- Increased risk of chronicity with exposure
- Wealthy countries → decreasing risk
 - US 1985 10.4% to 2002 7.8% → likely much lower now
 - Europe 13.5% 1991 to 6.8% in 2000
 - Ongoing transmission 0.2% per year
 - No recommendation for isolation of HCV patients but universal precautions & test every 6-12 months

Developing countries

Very variable but up to 80% in single centre studies & up to 15% per year transmission

Clinical aspects in ESRD

- Clinical effects may be a bit more subtle
- Lower ALT
 - Screen everyone! Not just those with high ALT
 - Must continue to screen for HCV over time ongoing transmission risk
- HCV RNA
 - Lower levels post HD
- Fibrosis assessment
 - Biopsy challenging platelet dysfunction
 - Non-invasive tools

Assessment of Fibrosis Critical

- 1. Determines degree of liver damage
- (fibrosis ≠ cirrhosis)
- 2. Determines need for therapy
- 3. Determines management
- Affects response rate
- Affects duration of therapy
- Affects follow-up (need for HCC screening)
- May affect choice of treatment
 - All patients should have an assessment of fibrosis
 - If cirrhosis obvious no need

New Tools

Transient Elastography (Fibroscan)

- Ultrasound-based technique
- Determines liver 'stiffness'
- Correlates well with fibrosis
- No ceiling ie. increases with worsening cirrhosis → predicts complications (eg. varices)
- Simple to use minimal training

Caveats: Fails in up to 20% (especially obese) – improved with XL probe Influenced by inflammation – falsely elevated

Not effective with ascites - with PD??? Lower values in CKD?

Serum Panels

- APRI AST:Platelet Ratio Index
 - (AST/ULN) / (PIt/ULN)
 - <0.5 98% NPV for cirrhosis, <1.0 93% NPV</p>
 - >2 80% PPV (more useful for ruling out cirrhosis)
- Fibrotest
 - GGT, Bilirubin, Haptoglobin
 - Alpha-2-macropglobulin, apo-lipoprotein-A1
 - No data in CKD…levels may be affected

 HCV is bad for kidneys and ESRD is bad for HCV...can we do anything about it?

What about treatment?

The good news

Treatment

HCV is a CURABLE infection

No small feat – first curable chronic viral infection

SVR is a durable endpoint

1,343 patients who achieved SVR followed for mean 3.9 yrs

- Late relapse is extremely rare
- SVR is truly a virological cure

Is SVR a cure of liver disease

286 pts with mild fibrosis and SVR after IFN therapy

- SVR stops progression of liver disease
- Normal survival in those with mild disease

What about with advanced disease?

Long-term follow-up of 534 patients with F3/F4 post-treatment

SVR eliminates liver failure & liver-related death

SVR reduces All-Cause Mortality

Long-term follow-up of 534 patients with F3/F4 post-treatment

SVR is not a surrogate = reduced *all-cause* mortality

Benefits beyond the liver

Cardiovascular Disease

SVR may reduce diabetes and CVD!

Effective but difficult

Lots of side effects

- Flu-like symptoms
- Fatigue
- Depression
- Anemia
- Neutropenia
- Injection site reactions
- Hair thinning
- Skin rash
- Autoimmune reactions
- Many others...

Try dealing with this for a whole year!

Treatment in CKD – the old paradigm

- Indications for treatment similar
 - Preferably before transplant
 - Post-transplant IFN risk of graft loss
- Very difficult with Peg/RBV → anemia
 - 1% treatment uptake among 4,735 HCV pts on HD
- Many small studies poor results
 - SVR ~33% with peg monotherapy
 - D/C rates 18-30%
 - Add low dose RBV → increase SVR to ~50%, but
 D/C rate to ~25%

But now we have DAAs...everything has changed right?

The Good News

Why did it take so long?

Remarkable Diversity

Toxicity of Early DAAs

The real reason...

HIV Lobby

HCV Lobby

Not just a theory....

Fortunately...there has been progress

23 HCV Trials in NEJM since 2012

ENTRE FOR

Combination therapy

Paritaprevir/r (PI) + Ombitasvir (NS5A) + Dasabuvir (NNI) + RBV x 12 wks

- 5 drugs (3 pills) BUT 12 wks, 1 size fits all
- Very well tolerated (vs. placebo), few virologic failures

How about a single pill?

ION 1, 2 & 3: Sofosbuvir (Nuc) + Ledipasvir (NS5A) FDC +/- RBV

- Highly effective single-tablet regimen
- No issues with resistance

Pretty close to perfectovir!

SOF + Velpatasvir (NS5A) x 12 wks in **G1, 2, 4, 5, 6 – Naïve/Experienced +/- cirrhosis**

Sofosbuvir in renal disease

- Metabolite accumulates unclear clinical significance
- Based on this approved in all but severe renal impairment

What about those with advanced CKD?

C-SURFER

Second generation PI (Grazoprevir) + NS5A (Elbasvir)

- 75% Dialysis
- 45% Black
- 52% G1a

- 83% Trt naive
- 6% cirrhosis

SVR12

^{* 1} SVR12 in placebo group – no treatment taken...

Safety

	GZR/EBR (ITG) (n = 111)	GZR/EBR (DTG) (n = 102)	Placebo (DTG) (n = 113)	Difference in % Estimate ITG vs placebo (95% CI)
AEs, ^a n (%)	84 (75.7)	61 (59.8)	95 (84.1)	-8.3 (-18.9, 2.2)
Headache	19 (17.1)	7 (6.9)	19 (16.8)	0.3 (-9.6, 10.4)
Nausea	17 (15.3)	10 (9.8)	18 (15.9)	-0.6 (-10.3, 9.1)
Fatigue	11 (9.9)	9 (8.8)	17 (15.0)	-5.1 (-14.1, 3.7)
Insomnia	7 (6.3)	2 (2.0)	12 (10.6)	-4.3 (-12.2, 3.2)
Dizziness	6 (5.4)	5 (4.9)	18 (15.9)	-10.5 (-19.1, -2.6)
Diarrhea	6 (5.4)	5 (4.9)	15 (13.3)	-7.8 (- 16.1, -0.2)
Serious AEs, n (%)	16 ^b (14.4)	13° (12.7)	19 (16.8)	-2.4 (-12.1, 7.3)
Discon due to an AE, n (%)	0 (0)	3 (2.9)	5 (4.4)	-4.4 (10.0, -1.0)
Deaths,d n (%)	1 (0.9)	0 (0)	3 (2.7)	-1.8 (-6.7, 2.5)

Fewer AEs in delayed treatment group Fewer AEs and SAEs than in placebo group

Summary Grazoprevir/Elbasvir

- Highly effective for G1 and G4 with CKD
- Safety similar to placebo
- But what about those with other genotypes?

What about SOF?

8.6 Renal Imp

No dose adjust impairment. Twith severe renal impairment or severe renal im

Pharmacology (12.3)]. Refer als information for patients with CrCl <56

with mild or moderate renal
en established in patients
tage renal disease
for patients with
and Clinical
cribing

Can we just lower the dose?

LIVER DISEASE

Reduced SOF Dosing

SOF 200 mg + RBV 200 mg OD x 24 wks vs historical control (400 mg)

- Dose reduction lowers exposures but early studies suggested 200 mg dose less effective...alternate days likely similar
- Viral kinetics similar in this pilot study but probably not ideal esp for G3

What happens when clinicians ignore the label?

SOF in CKD – HCV TARGET

			eGFR 46-		
	eGFR ≤30* (N=19)	eGFR 31-45 (N=63)	60 (N=168)	eGFR >60 (N=1,643)	p- value
Age ≥ 65	5 (26)	18 (29)	55 (33)	292 (18)	<0.01
Cirrhosis	8 (42)	43 (68)	95 (57)	844 (51)	0.03
History of Decompensation	6 (32)	30 (48)	55 (33)	382 (23)	<0.01
MELD ≥ 10	5 (26)	26 (41)	33 (20)	227 (14)	<0.01
Liver Transplant	7 (37)	34 (54)	57 (34)	136 (8)	<0.01
Kidney Transplant	3 (16)	5 (8)	9 (5)	12 (1)	<0.01
Diabetes	7 (37)	30 (48)	48 (29)	358 (22)	<0.01

CKD in older pts with DM, cirrhosis, history of decomp & post-Tx

Response unaffected by GFR

Different SOF-containing regimens: SOF/PR, SOF/RBV, SOF/SIM

What about safety?

	eGFR ≤ 30 (N=17)	eGFR 30-45 (N=56)	eGFR 46-60 (N=157)	eGFR>60 (N=1,559)	n valua
Common SOF AEs	(14-17)	(14–30)	(N-137)	(N-1,559)	p-value
Fatigue	3 (18)	19 (34)	56 (36)	543 (35)	0.54
Headache	1 (6)	9 (16)	19 (12)	274 (18)	0.34
Nausea	3 (18)	8 (14)	33 (21)	247 (16)	0.24
Anemia AE	6 (35)	16 (29)	37 (24)	246 (16)	<0.01
Required Transfusion(s)	2 (12)	5 (9)	3 (2)	31 (2)	<0.01
Received Erythropoietin	0 (0)	6 (11)	13 (8)	46 (3)	<0.01
RBV		J (11)		(6)	10.10 =
Dose reduction for anemia	3 (43)	8 (30)	33 (42)	185 (19)	<0.01
RBV Discontinuation	0 (0)	4 (15)	1 (1)	12 (1)	<0.01
Worsening Renal Function	5 (29)	6 (11)	4 (3)	14 (1)	<0.01
Renal or Urinary System AEs	5 (29)	6 (11)	13 (8)	84 (5)	<0.01
Serious AEs	3 (18)	13 (23)	8 (5)	100 (6)	<0.01
Early Treatment Discontinuation	1 (5)	4 (6)	6 (4)	68 (4)	0.60
Early Treatment DC due to AE	1 (5)	2 (3)	4 (2)	39 (3)	0.53
Death	1 (5)	0 (0)	2 (1)	10 (1)	0.11

More anemia and worsening renal function

GFR over time

Overall trend of worsening GFR but very variable individual responses

What does this all mean?

- Kidney injury was based on 'chart record' → very variable
 - Could overestimate not objective
 - Could underestimate only severe cases noted
 - Transplant, cirrhosis important confounders
 - Consequences unclear
 - No off-treatment 'recovery', no control group
 - Relatively small numbers
- Safety data somewhat unclear...
- No effect on SVR

A useful study

- SOF in HD with careful PK
- No SOF accumulation
- Higher 007 levels with qd than TIW BUT...
- HD removed ~53% of 007
 but no effect on other DAAs
- No AEs associated with 007 accumulation
- OD dosing SVR 7/7
- TIW dosing SVR 5/7

SOF daily or TIW

Suggests that full dose of SOF is likely to be safe

Accumulating safety/efficacy data

- 17 G1 pts with GFR<30 or HD
- Full dose daily SOF/SIM x 12 w
- Advanced liver disease
 - 8 cirrhosis
 - 4 F3
 - 76% G1a
- SVR 100%
- AEs mild + 1 blood transfusion

- Other smaller series with similar results
- Most suggest lower dose/longer interval = reduced SVR

Bottom line on SOF in CKD

To answer the question

We need you...

Our trial

- Sofosbuvir/Velpatasvir in ESRD all genotypes
- 12 weeks of therapy
- HD or PD
- Careful PK and safety monitoring

Please screen your units (again) and send us your non-genotype 1 patients!

We would love to have a renal co-investigator – any takers?

Other therapies coming...

- Glecaprevir (PI) / Pibrentasvir (NS5A)
- Pan-genotypic
- Hepatically cleared safe in renal disease
- SVR rates 95% +
- Well tolerated
- Approved but Not reimbursed in Canada!

What about treatment of HCV-specific CKD?

A case...

- 45 yo woman
- HCV genotype 1a surgery as an infant
- Presents with:
 - Ascites
 - Severe rash with ulcers on legs & back
- Labs:
 - ALT 35, AST 65Hb 99 Plt 99 WBC 3.7
 - Bili 12 Alb 32 INR 1.2
 - Cr 130 U/A 3+ RBC, 3+ Prot, RBCs, cellular casts
 - 24 hr urine 2.5 g protein + kappa light chains
 - Cryocrit 20%

A case...

- 2009 Treated Peg/RBV seizure stopped
- 2011 Ineligible for trials due to co-morbidities
- Desperate for new options...

HCV-related Cryoglobulinemia

- >90% of Type II "Essential" Mixed Cryo are HCV+ve
- Polyclonal IgG + mono/oligoclonal IgM with RF activity
- Found 25-30% of HCV +ve
 - Only 10-15% of total are symptomatic
 - Range mild skin involvement to life-threatening vasculitis
 - Renal involvement
 - Classically MGPN
 - 20% at diagnosis of cryo
 - Overt nephritis 20-25%
 - Nephrotic syndrome 20%
 - ESRD 10-33%

Therapeutic options for HCV-MC

Therapy	SVR	Clinical Response	Relapse	Limiting factors
PEG-IFN + RBV	44-62%	40-67.5%	> 60%	Side effects, Duration of therapy
RTX	Nil	70-80%	Sig. Relapse after 18 months.	Ongoing Tx required
Steroids/ Immunomodulator	Nil	3.5-14%	High	Side effects, efficacy
PLEX	Nil	Minimal Data	Sig. Relapse	Short effect, cost

- Antiviral vs immunosuppressive therapy
- Ritux + PR likely best but far from ideal

DAAs in HCV-related cryo

- Cohort of 83 with cryo treated with DAAs +/- PR
 - 65 cryo +ve asymptomatic vs 18 with symptoms
 - 10 renal involvement

Well tolerated with few AEs with few IFN-free DAAs

Renal parameters during therapy

*2 patients started and 1 remained on HD post-treatment

- Clear improvement in renal function
- Complete clinical and immunological response likely delayed
- Similar results in a study of 7 pts treated with SOF-based tx

What happened to our patient

- Treated sofosbuvir + simeprevir
 - Symptoms improved with viral suppression
 - Relapsed symptoms returned!
- Retreated with SOF/ledipasvir
 - SVR
 - Slow resolution of all symptoms
 - Now, no rash, no ascites, GFR 65 cc/min!

Outline

- Background on HCV
- HCV & CKD
 - Risk of HCV in CKD and CKD in HCV
- Treatment
 - Genotype 1
 - Other genotypes...controversies remain
 - Cryo-related renal disease
- The transplant conundrum

What about transplant?

To treat before or after...that is the question

The transplant conundrum...

- Treatment before or after renal transplant?
- IFN dogma
 - Treat before because we can't treat after
- Direct acting antivirals...
 - Treatment after transplant easy -> drug interactions but no other issues
 - Are there advantages?

Treatment Post-Transplant

Post Renal Transplant (France)

- Accumulating data...safe & ?easy to treat post transplant
- Only issue is DDIs...manageable but need to be careful

What about HCV +ve donors?

- Shortens waiting time for HCV +ve recipients
 - New York → 7 yrs to 7 mo for cadaveric donor
 - Allows them to receive an HCV-infected kidney...make sure they are HCV RNA +ve (not just Ab +ve)
 - If possible, HCV genotype on donor → may affect treatment choices
- Could we even consider it in HCV –ve recipients?
 - Need to be careful risk of fibrosing cholestatic HCV

Using infected grafts?

The NEW ENGLAND IOURNAL of MEDICINE

Trial of Transplantation of HCV-Infected Kidneys into Uninfected Recipients

- 10 HCV –ve recipients received HCV +ve kidneys
- All were viremic posttransplant
- All treated elbasvir/grazoprevir
- 100% cure

What about in lung transplant?

- With opiate crisis → 20% of eligible lung donors are HCV +ve!
- Ongoing trial of using HCV-infected donors to HCV-negative recipients with ex-vivo lung perfusion

Prevention is better than treatment!

- Treatment with UV light or methylene blue loss of infectivity...our next study!
- Any interest on the renal front?

Summary

- HCV is a major global AND local public health problem
 - Prevalence and consequences greater in CKD
 - Cause and consequence of CKD/ESRD
 - Still under-diagnosed screen your patients annually!
- Treatment has improved dramatically!
- Still a challenge for non-genotype 1
 - Send us your patients for our trial!
- Cryo-related renal disease
 - Antiviral therapy, immunosuppression
- Approach to transplant still a bit unclear...interest in a trial of ex-vivo renal perfusion?

The payers' position

Limitations on access here and in most European countries

Costs for 12 weeks of Sofosbuvir

The prices are still much too high!

Cost of SVR actually going down

- Lower in Canada treatment highly cost-effective
- Curative therapy → short-term cost, long-term savings